
(Refer Slide Time: 21:48)

Now, we will go to the another mode, which is more complex in nature which is the indirect

mode. By indirect mode already we mean that whenever it’s the indirect mode of 𝑀; that

means, we say this is the memory here is 𝑀, at the address of 𝑀 here there may be some

addresses called x is some content over here, then again you have to look at the content in x

and basically this is your operand, this is what is the idea we all know about it. So, if you now

look at basically your first 3 stages. So, first 3 stages; as I already were discussing like 𝑃𝐶𝑜𝑢𝑡

𝑀𝐴𝑅𝑖𝑛 and this is control stage basically are only for fetching the instruction.

Next one is what I have to do. So, this is the instruction load 𝑅1 into memory from indirect

memory location, that is the content of 𝑀 you have to again go to that memory location and

there will get the operand it has to be loaded to 𝑅1 that is we say that load the control memory

location 𝑀1 to register 𝑅1 where 𝑀1 is specified in the memory location that is indirect and

we assume that the length is one.

So, the next stage is 𝐼𝑅𝑜𝑢𝑡 memory register in and read if we are fetching the basically. So,

what we are doing here. So, now, the after executing the third instruction the third control step

register instruction register IR is having the value of 𝐿𝑂𝐴𝐷 𝑅1, 𝑀. So, in the fourth stage what

I am going to do I am going to take the value of 𝑀 and I am going to feed it into the memory

address register so that you can read the value of memory location 𝑀 that is x in this example.

So, 𝐼𝑅𝑜𝑢𝑡 that is you are going to take the value of 𝑀 and dump it into the memory register

address register. So, that now I can read the value of 𝑥.

588

(Refer Slide Time: 23:24)

Of course, in stage 5 we have to wait till everything is ready. So, once it is ready basically we

know that the value of memory location 𝑀 that is 𝑥 in the example is now loaded into the

memory data register now interestingly for all cases what we have seen for most of the cases

after the memory data out, if it’s a direct instruction we generally take this memory data out

from the memory buffer register we actually say 𝐼𝑅𝑖𝑛, if is a fetch or sometimes we call 𝑅1in,

in that way.

That means, the operand that is present over here the 𝑥 we are directly loading at some place

or we are directly using it as an instruction, but in this case it is very interesting that the memory

data out will be fed to the memory address register in basically; that means, what I am going

to take this value of 𝑥 and I am again dumping it to the memory address register because exact

value will be found out in memory location 𝑥.

So, if you quickly look at what it happens in the bus it will be more clear. So, look at the bus.

So, many times you have to refer to this diagram. So, we will recollect the stage we are in. So,

basically we are in this stage when say load 𝑅1.

589

(Refer Slide Time: 24:40)

So, we just recall the instruction is something like say load 𝑅1 indirect 𝑀 and your 𝑀 we are

having something like this 𝑀 this is 𝑥, this is your memory location x and this is the x location.

So, now, your instruction register basically has 𝐿𝑂𝐴𝐷 𝑅1, 𝑀 that is already there now what we

are doing. So, now, we are making 𝐼𝑅𝑜𝑢𝑡 and we are loading the memory address register with

𝑀. So, this is done.

So, now, it is done means, now the content of memory location that is x will be given into the

memory data register after you have to wait for MFC, now what happened now this content 𝑥

generally is used by some of the registers if is the data or it is an instruction it will go to 𝐼𝑅,

but in this case interestingly what is going to happen this 𝑥 will be again going to fed back to

the memory address register. So, in this case now it will be an 𝑥.

So, if it is an 𝑥, the content we can say that now the content is l. So, that content will again

come here and which is actually your real operand. So, in next case what we do we say, memory

data register out and memory address register in. So, that the value of 𝑥 will be fed to the

memory address register now the memory buffer register after a wait will give the exact value,

which is present in memory location which is your exact data. So, it will, will come to the

memory data register and then you can load it to your 𝑅1 or wherever by a simple signal

sequence that is 𝑀𝐷𝑅𝑜𝑢𝑡 register 𝑅1𝑖𝑛.

So, that is what is happening right. So, in this case you read the instruction then you read the

wait for some time, the signal that is add. Sorry, LOAD 𝑅1, 𝑀, this instruction is already loaded

590

into the memory then you take in the sequence you memory data register out and basically you

are going it in memory in, that is a very important stage over here that is what going to take the

value of content of 𝑀, which was x and you are dumping it into the memory address register,

next you wait for some amount of time and then in this case now exactly you are going to have

the and operand which is present in the memory location x that the content we are assuming l

for the time being will be taken from MDR it will be dump to register 𝑅1. So, in two indirection

stage 𝑅1, we have got the exact operand.

(Refer Slide Time: 26:43)

That was basically first it contains 𝑀 which was x now this is x and the exact content l which

will be actually dumped into 𝑅1.

So, in the indirect mode we can get the values. So, now, again another mode we are taking

which is called registering indirect in this case it was a memory indirect it is a register indirect

that you have to go to the register and the content of the register will also contain the location

of a memory where the data will be present like.

591

(Refer Slide Time: 27:09)

For example, load the content of memory location 𝑀 to register 𝑅1, where 𝑀 is specified in

register 𝑅1 that is say there is a register load the content of memory location 𝑀 to 𝑅1. So, it

should be 𝑅2. So, load the content of memory location 𝑀 to register 𝑅1 where 𝑀 is specified

in 𝑅2. So, 𝑅2 will have some value 𝑀. So, it is your memory. So, this is your value of 𝑀. So,

this is your 𝑅2.

So, exact value of the operand address will be found in 𝑅2. So, 𝑅2 will have the value of 𝑀, 𝑀

we will have to be fetched into the looked into the memory this exact value say l will be dumped

to 𝑅1 that is what is the register indirect mode that we are going to now do. So, as already

discussed many times that the first 3 stages are basically for your basic operation of loading

the instruction fetching the instruction then what we do then we say 𝑅2 out and memory address

register in. So, now, in this case it is interesting. So, what happened the if you look at 𝑅2 so,

𝑅2 basically is a register where the exact address of the data is present. So, in this case if you

see so, what I am trying to do so, if you look at so, your instruction 𝑅2 is register.

592

(Refer Slide Time: 28:15)

Basically it is your register 𝑅2, it has the value of 𝑀. So, that is your actually memory location

address. So, this one you have to feed it directly to the memory address register. So, once you

give the value of 𝑀, which is the content of 𝑅2 to the memory address register, it will get the

value l after reading. So, you do register 𝑅2 from memory address 𝑀 from 𝑅2 actually you are

going to dump the value of the memory address 𝑀 because it will have the value of l.

So, you note in this case we are not actually reading the value to memory address register from

the instruction register for all other cases, if you look so, if you had some instruction like as I

told you like say load 𝑅1 say 𝑀. So, what we used to do we used load the value of 𝑀, from the

instruction register directly to memory address register, but in register indirect mode if you

observe what we are doing we are directly taking the value of 𝑅2 and we are loading it in the

memory address register. So, actually the instruction register when it decodes, it finds that it is

an indirect addressing mode.

So, in that case the role of the instruction register is not used to directly hand over all the stuffs

to register 𝑅2 and not get involved in the picture, but if it’s a direct mode or an indirect mode

not involving a register. So, in this case the instruction register value the 𝑀 has to be directly

basically loaded into the memory address register. So, in this case the instruction, the decoder

will generate such a signal. So, that instead of 𝑅2 out it will be instruction register out that is it

will take the value of 𝑀 and dump it in your register, here it is a memory direct or memory

indirect, but even when the instruction register finds that basically now, the instruction is

593

involved with register sonly and no memories in picture. So, directly 𝑅2 the content of 𝑅2 will

be directly loaded to the memory address register; that means, basically 𝑅2, the content 𝑀 will

load to the memory address register after that it is very simple you have to wait for some amount

of time and in that case basically. So, once it is done the memory data you have already given

it the address of 𝑀 to the memory address register you have to wait for some amount of time

and then this l will come to the memory data register or the memory buffer register and it is

done then just you have to load it into 𝑅2. So, you have to wait for some amount of time.

(Refer Slide Time: 30:33)

After the memory register you are going to dump it to R in. So, you can see, it is actually in

this case it should be I am just a mistake it should be basically register indirect mode register

indirect mode just a copy problem. So, in this case if you can see. So, your indirect mode if it’s

the memory indirect mode you require 8 stages to do it, but if in your register indirect basically,

you can solve it in 6, basically 6 steps of time. So, basically register indirect is a more faster

mode compared to a or less number of steps required to a memory access, because in this case

you just require one access, but in the previous case you required two memory access and in

fact, also it depends on whether you want to load or you want to add and all those problems are

there.

So, depending on different type of addressing modes the sequence of control or the number of

steps will all differ. So, this unit basically gave you a spectrum of different type of addressing

modes and with different functionality like load and add and we have shown what are the

594

sequence of control instructions required or the micro instruction and how a complete

instruction can be controlled with this respect to the control signals that is basically which we

have covered.

So, we have taken immediate mode, direct mode, indirect mode, register indirect mode, register

mode and so forth. So, which gave you a wide spectrum of designing instruction set in terms

of basically your control signals given a single bus architecture as well as different type of

addressing modes under consideration. So, basically I told you this is a quite small module. So,

we come to that and then we have a very simple question like draw the diagram of a CPU with

single bus architecture and write different type of instructions with immediate addressing,

indirect addressing, displacement addressing.

(Refer Slide Time: 32:05)

and some other addressing modes and try to design this try to express how the instructions will

execute in terms of control steps and what are the control signals for that, if you were able to

answer this of course, the two objectives of this course like explain the addressing mode with

respect to internal structure of the processor and instruction format and the control instructions

and design the complete control steps to execute instruction that involve different addressing

modes gets satisfied.

So, once you, after doing this unit you will be able to solve this problem and you will be able

to meet these objectives. So, with this basically we come to an end of this unit and in the next

595

unit what we will be looking at, we will look at more sophisticated type of instruction like a

jump instruction, function call etcetera. So, which will be little bit slight more intricate details.

Thank you.

596

